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Abstract. We construct a planar version of the natural extension of the
piecewise linear transformation T generating greedy β-expansions with digits in
an arbitrary set of real numbers A = {a0, a1, a2}. As a result, we derive in an easy
way a closed formula for the density of the unique T -invariant measure µ abso-
lutely continuous with respect to Lebesgue measure. Furthermore, we show that
T is exact and weak Bernoulli with respect to µ.

1. Introduction

Let β > 1 be a real number, and A = {a0, a1, . . . , am} a set of real num-
bers. An expression of the form

(1) x =
∞∑

n=1

bn

βn
,

where bn ∈ A is called a β-expansion of x with digits in the set A. In [12],
Pedicini showed that if β > 1, and if the set of real numbers A = {a0, a1,
. . . , am} satis�es the following two conditions:
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22 K. DAJANI and C. KALLE

(i) a0 < a1 < · · · < am,
(ii) max15j5m(aj − aj−1) 5 am−a0

β−1 ,
then every x ∈ [ a0

β−1 , am
β−1 ] has an expansion of the form (1), with bn ∈ A for

all n = 1. He also gave a recursive algorithm that generates greedy expansions
of the form (1), in the sense that at each step of the algorithm, bn is chosen
to be the largest element of A such that

(2)
n∑

i=1

bi

βi
+

∞∑

i=n+1

a1

βi
5 x.

We call a set A, satisfying (i) and (ii) an allowable digit set. In [3] it was
shown that if A is allowable, then one can construct a dynamical system
whose iterates generate, for all points x ∈ [ a0

β−1 , am
β−1 ], all possible expansions

of the form (1). If A is not allowable, then not every point has an expan-
sion. The size of the set of real numbers that can be represented by the
expression (1), for di�erent choices of β and for A = {0, 1, 3}, was studied by
Keane, Smorodinsky and Solomyak in [9]. Later, Pollicott and Simon [13]
generalized their results to the case A is a set consisting of non-negative in-
tegers. They gave the Hausdor� dimension of the set of points that possess
an expansion of the form (1).

Throughout this paper, we will assume that A is an allowable set. In case
A =

{
0, 1, . . . , bβc} , where bxc denotes the largest integer less than or equal

to x, then one is led to the classical case. The interest in such expansions
was initiated by Rényi [14], in his introduction of β-expansions generated by
iterating the map

Tβ :
[
0,

bβc
β − 1

]
→

[
0,

bβc
β − 1

]
: x →





βx (mod 1), if 0 5 x <
bβc
β

,

βx− bβc, if bβc
β

5 x 5 bβc
β − 1

.

If we set

(3) bc
1 = bc

1(x) =





i, if x ∈
[
i− 1

β
, i

β

)
, for i = 1, . . . , bβc,

bβc, if x ∈
[bβc

β
,
bβc

β − 1

]
,

and for n = 1, bc
n = bc

n(x) = bc
1(T

n
β x), then Tβx = βx− bc

1, and for any n = 1,

x =
n∑

i=1

bc
i

βi
+

Tn
β x

βn
.
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A NATURAL EXTENSION FOR THE GREEDY β-TRANSFORMATION 23

Letting n →∞, it is easily seen that x =
∑∞

n=1
bc
n

βn . We call the β-expansion
generated by the transformation Tβ the classical greedy β-expansion of x.
More precisely, for each n = 1, if bc

1, . . . , b
c
n−1 are already known, then bc

n is
the largest element of the complete digit set A =

{
0, 1, . . . bβc} , such that

n∑

i=1

bc
i

βi
5 x.

The map Tβ gives one algorithm that generates (classical) β-expansions of the
form (1) with digits in A =

{
0, 1, . . . , bβc} . In fact, a Lebesgue a.e. point in

[0, bβcβ−1 ] has uncountably many possible expansions of the form (1) (see [17],
[5], and [6]).

Let λ denote the 1-dimensional Lebesgue measure. The transformation
Tβ has a unique invariant measure, absolutely continuous with respect to λ.
Rényi proved the existence of this measure in [14], and Gel'fond and Parry
independently, gave an explicit formula for the density function of this mea-
sure in [7] and [11] respectively. The invariant measure has the unit interval
[0, 1) as its support and the density function hc is given as

(4) hc : [0, 1) → [0, 1) : x 7→ 1
F (β)

∞∑

n=0

1
βn

1[0,T n
β 1)(x),

where F (β) =
∫ 1
0

∑
x<T n

β 1
1

βn dλ is a normalizing constant. From now on we
will refer to an invariant measure, absolutely continuous with respect to λ as
an ACIM.

Let β > 1, and A = {a0, . . . , am} any allowable digit set. In [3], a trans-
formation Tβ,A is given whose iterates generate greedy β-expansions of the
form (1), and satisfying (2). It is also shown that Tβ,A is conjugate to Tβ,Ã,
where Ã = {0, a1 − a0, . . . , am − a0}, i.e. a digit set of which the �rst digit
equals zero. Therefore, without loss of generality, and for ease of notation, we
shall assume that a0 = 0, i.e. A = {0, a1, . . . , am}. In this case, the underlying
transformation Tβ,A = T : [0, am

β−1 ]→ [0, am
β−1 ] is given by

Tx =





βx− aj , if x ∈
[
aj

β
,
aj+1

β

)
, for j = 0, . . . , m− 1,

βx− am, if x ∈
[
am

β
,

am

β − 1

]
.

The sequence of digits {bn}n=1 can be de�ned in a way similar to (3)
as follows. Set b1(x) = b1 = aj if x ∈ [aj

β ,
aj+1

β ), and b1(x) = b1 = am if
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24 K. DAJANI and C. KALLE

x ∈ [am
β , am

β−1 ]. Let bn = bn(x) = b1(Tn−1x) for n = 1. One easily sees that
x =

∑∞
n=1

bn
βn with bn satisfying (2), i.e. T generates greedy β-expansions

with digits belonging to the set A. We refer to T = Tβ,A as the greedy β-
transformation with digit set A (see [3] for more information). If x =

∑∞
n=1

bn
βn

is the greedy β-expansion of x, we also write
x =β b1b2b3 . . . ,

which is understood to mean the same as (1).
From [2] we know that the transformation T has an ACIM that is unique

and ergodic. The support of this measure is given by the interval [0, ai0 −
ai0−1), where
(5) i0 = min

{
i ∈ {1, . . . , m} : T [0, ai − ai−1) j [0, ai − ai−1) λ a.e.

}
.

There are some results on formulas for densities of general piecewise linear
maps. In particular, Kopf [10] considered a class of piecewise linear, expand-
ing maps from the interval [0, 1] to itself, that leave the points 0 and 1 �xed.
He constructed a matrix M , the entries of which consist of in�nite sums of
indicator functions, and he used a vector from the nullspace of M to obtain
the density function. A more recent result can be found in [8] from Góra. He
considered an even more general class of piecewise linear maps. In his setting,
the maps only have to be eventually expanding, which means that for each
slope βi there must exist an n = 1 such that |βi|n > 1. The slopes can also be
negative, under the same condition. For this class of transformations, Góra
constructed a matrix S and used the solutions of a certain linear system in-
volving S to obtain the density function. Two main di�erences between their
two methods are the following. First of all, Kopf makes the extra assump-
tion that the points 0 and 1 are �xed. More importantly, Kopf obtains all
invariant densities, while Góra gives only one version of the density for each
ergodic component. We seek a form similar to that given by Wilkinson [18],
see (10) ahead. In [2], it is shown that if
(6) m < β 5 m + 1,

then indeed the density of the ACIM is given by (10) (notice that m + 1 is
equal to the number of digits).

In [3] it is proven that the minimal amount of digits in an allowable digit
set is dβe. In other words, the amount of digits in A is at least equal to the
smallest integer larger than or equal to β.

Let N be the largest element of the set {1, . . . ,m} such that aN
β < ai0 −

ai0−1. De�ne a partition ∆ =
{

∆(ai) : 0 5 i 5 N
}

of the support of the
ACIM of T , where for i = 0, . . . , N − 1, we have

∆(ai) =
[
ai

β
,
ai+1

β

)
, and ∆(aN ) =

[
aN

β
, ai0 − ai0−1

)
.
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A NATURAL EXTENSION FOR THE GREEDY β-TRANSFORMATION 25

Note that T∆(aN ) =
[
0, T (ai0 − ai0−1)

)
and for i ∈ {0, . . . , N − 1}, T∆(ai)

= [0, ai+i−ai). Using ∆ and T , we can make a sequence of partitions {∆(n)}:
for n = 0,

(7) ∆(n) =
n−1∨

k=0

T−k∆.

The elements of ∆(n) are intervals and are called the fundamental intervals
of rank n. If

∆(b0) ∩ T−1∆(b1) ∩ . . . ∩ T−(n−1)∆(bn−1)

is an element of ∆(n), denote it by ∆(b0b1 . . . bn−1). We call a fundamental
interval ∆(b0b1 . . . bn−1) full of rank n if

λ
(
Tn∆(b0b1 . . . bn)

)
= ai0 − ai0−1

and non-full otherwise. This means that for a full fundamental interval,
∆(b0 . . . bn−1) we have

(8) λ
(
∆(b0b1 . . . bn−1)

)
=

ai0 − ai0−1

βn

and if ∆(b0 . . . bn−1) is non-full, then

(9) λ
(
∆(b0b1 . . . bn−1)

)
<

ai0 − ai0−1

βn
.

Let Bn be the collection of all non-full fundamental intervals of rank n,
that are not subsets of any full fundamental interval of lower rank. For
x ∈ [0, ai0 − ai0−1), de�ne φ0(x) = 1 and for n = 1, let

φn(x) =
∑

∆(b0b1...bn−1)∈Bn

1
βn

1T n∆(b0b1...bn−1)(x).

Put φ =
∑∞

n=0 φn. In [3], it is shown that for m < β 5 m + 1, φ is integrable
and the function

(10) h : [0, ai0 − ai0−1) → [0, ai0 − ai0−1) : x 7→ φ(x)∫
φ(x)dλ(x)

is the density function of the ACIM of T . This density is in fact a special case
of the one found by Wilkinson in [18] for a special class of piecewise linear
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26 K. DAJANI and C. KALLE

and expanding maps. Notice that for the classical greedy β-transformation,
Bn contains at most one element ∆(b0 . . . bn−1) and for this element we have

Tn
β ∆(b0 . . . bn−1) = [0, Tn

β 1).

So the density function from (4) is a special case of the density function from
(10).

In this article we give a natural extension of the greedy β-transformation
with three digits, i.e. with an allowable digit set of the form {0, a1, a2}. In gen-
eral, a natural extension is the smallest invertible dynamical system (in the
measure theoretic sense), that contains the dynamics of the original transfor-
mation as a subsystem. The concept of a natural extension of a non-invertible
system was introduced by Rohlin [15], where he gave a canonical way of con-
structing a natural extension, showed that it is unique up to isomorphism,
and proved that it possesses similar dynamical properties as the original sys-
tem. This is an interesting object, since it often demonstrates a dynamics
that is easier to understand than the original non-invertible system and it
can also be used to derive properties of the original system. There are many
ways to construct the natural extension, each having its own merit. As a re-
sult of our construction for the greedy β-transformation, we show that the
density given in (10) holds for any allowable digit set A = {0, a1, a2}. Since
the minimal amount of digits in an allowable digit set is dβe, one sees that
in this case 1 < β < 3. Every β-transformation with digit set A = {0, a1, a2}
is isomorphic to a greedy β-transformation with digit set {0, 1, u}, where
u = a2

a1
. Throughout the rest of the paper, we will assume that 1 < β < 3,

and A = {0, 1, u} is an allowable set. Our construction resembles the ver-
sion built in [4] for the classical greedy β-transformation (see also [1]). The
domain of the natural extension is roughly a (union) of rectangular regions
in R2, with invariant measure the restriction of the 2-dimensional Lebesgue
measure to our domain. The projection of the invariant measure in the �rst
coordinate gives the desired invariant density of T of the form given in (10).
We also show that under the invariant measure obtained, T is exact and
weakly Bernoulli. To illustrate the construction of our version of the natural
extension, an example of a speci�c greedy β-transformation with three digits
can be found in the last section. Here β is the golden mean and A = {0,1, 4

3}.

2. A closer look at the greedy β-transformation with three digits

Let 1 < β < 3, and A = {0, 1, u} an allowable digit set. The correspond-
ing greedy β-transformation T = Tβ,A has the form
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A NATURAL EXTENSION FOR THE GREEDY β-TRANSFORMATION 27

Tx =





βx, if x ∈
[
0,

1
β

)
,

βx− 1, if x ∈
[

1
β

,
u

β

)
,

βx− u, if x ∈
[
u

β
,

u

β − 1

]
.

The sequence of digits {bn}n=1 is de�ned for any x ∈ [0, u
β−1 ] as in the in-

troduction. From (5), we have that the support of the ACIM is either the
interval [0, 1), or the interval [0, u− 1). The following situations can occur.

Suppose �rst that β < u, then either T1 5 1 or T1 > 1.
If T1 5 1, then the support is [0, 1) and since T1 = β − 1, we get that

β 5 2. The transformation T on the interval [0, 1) is then isomorphic to the
classical greedy β-transformation, Tβ. Figure 1(a) is an example of this.

Fig. 1 : Examples of the four possibilities for the support of the ACIM of the greedy
β-transformation with three digits

If T1 > 1, then the support of the invariant measure is the other interval,
[0, u− 1), and we can deduce that β > 2. So, criterion (6) applies, and the
density for the invariant measure is given by (10). In Figure 1(b) we see an
example.

Suppose that u 5 β. Either u > 2 or u 5 2.
If u > 2, then the support of the ACIM is [0, u− 1) and we have that

2 < u 5 β. So again β > 2 and the density from equation (10) is the density
of the ACIM. See Figure 1(c) for an example.

If u = 2, then the support is [0, 1) = [0, u− 1) and β = 2. The trans-
formation in this case is isomorphic to the classical greedy β-transformation
Tβ . Similarly, if u = β < 2, then the support of the ACIM is [0, 1). The
transformation T is again isomorphic to Tβ.

Lastly, suppose that u = β− 1. Then it holds that β > 2, since u > 1 and
thus the density from (10) is the density for the ACIM.
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28 K. DAJANI and C. KALLE

The only situation we did not yet consider, is when u < min {β, 2} and
u 6= β − 1. To this, the rest of this article is dedicated. Figure 1(d) gives an
example of a transformation that satis�es these conditions.

From now on, suppose that T is a greedy β-transformation with an al-
lowable digit set A = {0, 1, u}, that satis�es the following conditions: u <
min {β, 2} and u 6= β − 1. Of course, since A is allowable and u 6= β − 1, we
also have u > β − 1. This is all captured in the following condition:
(11) max {β − 1, 1} < u < min {2, β}.

Notice that we do not assume that β 5 2, although we already know that
the density from (10) is the density of the ACIM in this case. The reason
is that the construction of the natural extension that will be given in what
follows, is also valid for 2 < β < 3.

Remark 2.1. Observe that, if 1 < β 5 2, then u < β implies condition
(11). So, if 1 < β 5 2 and a digit set A = {0, 1, u} satis�es u < β, then A is
an allowable digit set.

The support of the ACIM of the transformation T is the interval [0, 1).
The partition ∆ =

{
∆(0),∆(1),∆(u)

}
of this interval is given in the follow-

ing way:

∆(0) =
[
0,

1
β

)
, ∆(1) =

[
1
β

,
u

β

)
, ∆(u) =

[
u

β
, 1

)
.

As explained in the introduction, we can construct the sequence of partitions
{∆(n)}

n=1
, with ∆(n) as de�ned in (7). The elements of ∆(n) are denoted by

∆(b0 . . . bn−1) and are either full or non-full fundamental intervals of rank n.
We have the following obvious lemma.

Lemma 2.1. Let ∆(d0 . . . dp−1) and ∆(e0 . . . eq−1) be two full fundamental
intervals of rank p and q respectively. Then ∆(d0 . . . dp−1e0 . . . eq−1) is a full
fundamental interval of rank p + q.

Recall that for n = 1, Bn is the collection of all non-full fundamental
intervals of rank n that are not contained in any full fundamental interval of
lower rank. Let κ(n) be the number of elements in Bn. So κ(1) = 2, since this
is the number of non-full fundamental intervals of rank 1 and for all n = 1,
κ(n) 5 2n. The version of the natural extension that we will de�ne in the
next section, uses all the elements of Bn for all n = 1. To make sure that
the total measure of the underlying space of this version is �nite, we need
upper bounds for the values of κ(n). To obtain these, we will �rst describe
the structure of the elements of Bn.

Notice that by (9) we have that for all elements ∆(b0 . . . bn−1) ∈ Bn,

(12) λ
(
∆(b0 . . . bn−1)

)
<

1
βn

.
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A NATURAL EXTENSION FOR THE GREEDY β-TRANSFORMATION 29

For an x ∈ [0, 1), the set {Tnx : n = 0} is called the orbit of x under the
transformation T . Let

u− 1 =
∞∑

n=1

d
(1)
n

βn
=β d

(1)
1 d

(1)
2 d

(1)
3 . . . , β − u =

∞∑

n=1

d
(2)
n

βn+1
=β d

(2)
1 d

(2)
2 d

(2)
3 . . . ,

be the greedy β-expansions with digit set A of the points u− 1 and β−u, i.e.
the expansions generated by iterations of T . The number β − u would be the
image of 1 under T if T were not restricted to the interval [0, 1). The values
of the numbers κ(n) depend on the orbits of the points β−u and u− 1 under
T and whether or not T i(u− 1) and T i(β − u) are elements of ∆(u) for 0 5 i
< n. To see this, notice that for any ∆(b0 . . . bn−1) ∈ Bn one has b0 ∈ {1, u}
and the set Tn∆(b0 . . . bn−1) has the form

[
0, T i(u− 1)

)
or

[
0, T i(β − u)

)

for some 0 5 i < n. Suppose Tn∆(b0 . . . bn−1) =
[
0, T i(u− 1)

)
.

If λ(
[
0, T i(u− 1)

) ∩∆(u)) = 0, then ∆(b0 . . . bn−1) contains exactly one
element of Bn+1, namely ∆(b0 . . . bn−10) in case λ(

[
0, T i(u− 1)

) ∩∆(1)) = 0
or ∆(b0 . . . bn−11) in case λ(

[
0, T i(u− 1)

) ∩∆(1)) > 0. Furthermore, in the
�rst case,

Tn+1∆(b0 . . . bn−10) =
[
0, T i+1(u− 1)

)

and also in the second case,

Tn+1∆(b0 . . . bn−11) =
[
0, T i+1(u− 1)

)
.

On the other hand, if λ(
[
0, T i(u− 1)

) ∩∆(u)) > 0, then ∆(b0 . . . bn−1)
contains exactly two elements of Bn+1, namely the sets ∆(b0 . . . bn−11) and
∆(b0 . . . bn−1u). Now,

Tn+1∆(b0 . . . bn−11) = [0, u− 1)

and
Tn+1∆(b0 . . . bn−1u) =

[
0, T i+1(u− 1)

)
.

Similar arguments hold in case Tn∆(b0 . . . bn−1) =
[
0, T i(β−u)

)
, except that

T i(u− 1) is replaced by T i(β − u).
For n = 1, let κ̄(n) be the number of elements from Bn that contain two

elements from Bn+1. Then clearly for all n = 1,

(13) κ(n + 1) = κ(n) + κ̄(n).
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30 K. DAJANI and C. KALLE

From the above we see that in order to get an upper bound on κ(n), we
need to study the behavior of the orbits of u− 1 and β − u. The following
three lemmas say something about the �rst few elements of the orbits of these
points. These lemmas are needed to guarantee that the total measure of the
underlying space of the natural extension will be �nite.

Lemma 2.2. If 1 < β 5 2 and u < β, then u− 1 6∈ ∆(u).
Proof. Since β 5 2, we have 1− 1

β 5 1
β . Thus u(1− 1

β) 5 u
β < 1 and

hence u− 1 < u
β . ¤

Observe that Bn only contains fundamental intervals of which the �rst
digit is either 1 or u. Let κ1(n) denote the number of elements ∆(b0 . . . bn−1)
in Bn such that b0 = 1 and κ2(n) the number of elements in Bn that have u
as their �rst digit. Then of course for all n = 1,

κ(n) = κ1(n) + κ2(n).

Let
{

F (n)
}

n=0
denote the Fibonacci sequence, i.e. let F (0) = 0, F (1) = 1

and for n = 2, let F (n) = F (n− 1) + F (n− 2). Lemma 2.2 implies that the
number of elements of Bn+1 would be maximal if the only elements of Bn

that do not contain two elements from Bn+1 are the elements ∆(b0 . . . bn−1)
for which Tn∆(b0 . . . bn−1) = [0, u− 1). In this maximal situation we would
have κ1(1) = κ1(2) = 1 and for n = 3,

κ1(n) = κ1(n− 1) + κ1(n− 2).

For κ2 we would have that κ2(n) = κ1(n + 1). This means that under the
conditions from Lemma 2.2, we have for all n = 1 that κ1(n) 5 F (n) and

(14) κ(n) = κ1(n) + κ2(n) 5 F (n) + F (n + 1) = F (n + 2).

Let G = 1+
√

5
2 be the golden mean, i.e. the positive solution of the equation

x2 − x− 1 = 0.
Lemma 2.3. Let 1 < β 5 G and u < β. Then u− 1, β − u ∈ ∆(0).
Proof. Since β 5 G, we have 1 + 1

β = β, so by equation (11), u < β 5
(1 + 1

β). Thus u− 1 < 1
β and hence u− 1 ∈ ∆(0). On the other hand, since

β − 1
β 5 1, we have β − u < 1

β and thus β − u ∈ ∆(0). ¤
Remark 2.2. This lemma implies that for 1 < β 5 G and for digit sets

satisfying condition (11), we have κ(2) = 2. The largest amount of elements
for Bn would be obtained if

λ(
[
0, T i(u− 1)

) ∩∆(u)) > 0 and λ(
[
0, T i(β − u)

) ∩∆(u)) > 0
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A NATURAL EXTENSION FOR THE GREEDY β-TRANSFORMATION 31

for all odd values of i and thus T i(u− 1), T i(β− u) ∈ ∆(0) for all even values
of i. In this case,

κ̄(n) =

{
κ(n), if n is odd,

0, if n is even.

This would imply that for n = 1, κ(2n− 1) = κ(2n) = 2n. In general we have
that for all n = 1, κ(n) 5 2bn/2c+1.

Lemma 2.4. Let m = 2 and u < β. If 1 < β 5 2
1
m , then

T i(u− 1), T i(β − u) ∈ ∆(0)

for all i ∈ {0, 1, . . . ,m− 1}.
Proof. The proof is by induction on m. Note that from Lemma 2.3 we

know that u− 1, β − u ∈ ∆(0). Assume �rst that m = 2 and thus β 5
√

2
= 2

1
2 . Then

T (u− 1) = β(u− 1) ∈ ∆(0) ⇔ β(u− 1) <
1
β

⇔ u

β
<

1
β

+
1
β3

.

If β 5
√

2, then 1
β + 1

β3 > 1 and since u < β, T (u− 1) ∈ ∆(0). On the other
hand, since β − u ∈ ∆(0), we have

T (β − u) = β(β − u) ∈ ∆(0) ⇔ β2 − βu <
1
β

⇔ β − 1
β2

< u.

If β 5
√

2, then β − 1
β2 < 1, and thus T (β − u) ∈ ∆(0).

Now, assume that the result is true for some k = 2. Let m = k + 1 and
β 5 2

1
k+1 . Then certainly β 5 2

1
k , so by induction T i(u−1), T i(β−u) ∈ ∆(0)

for all i ∈ {0, 1, . . . , k − 1}. We only need to show that T k(u− 1), T k(β − u)
∈ ∆(0). First consider T k(u− 1) = βk(u− 1). We have

T k(u− 1) ∈ ∆(0) ⇔ βk(u− 1) <
1
β

⇔ u

β
<

1
β

+
1

βk+2
.

Since β 5 2
1

k+1 , then
1
β

+
1

βk+2
= 3

2 · 2 1
k+1

= 3
2
√

2
> 1.

Thus T k(u−1) ∈ ∆(0). We now consider T k(β−u) = βk(β−u) and see that

T k(β − u) ∈ ∆(0) ⇔ βk+1 − βku <
1
β

⇔ β − 1
βk+1

< u.
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Since β 5 2
1

k+1 , then

β − 1
βk+1

5 2
1

k+1 − 1
2

5
√

2− 1
2

< 1.

Thus T k(β − u) ∈ ∆(0) and this proves the lemma. ¤
Remark 2.3. Suppose 21/(m+1) < β 5 21/m and u < β. Lemma 2.4 im-

plies that κ(i) = 2 for i ∈ {1, . . . ,m}. By the same reasoning as in Remark 2.2,
κ(n) would obtain the largest possible value if

λ(
[
0, T i(u− 1)

) ∩∆(u)) > 0 and λ(
[
0, T i(β − u)

) ∩∆(u)) > 0

for all i = `m + (`− 1), ` = 1, and T i(u− 1), T i(β − u) ∈ ∆(0) for all other
values of i. This would imply

κ̄(n) =

{
κ(n), if n = `m + (`− 1) for some ` = 1,

0, otherwise.

Thus, to get the maximal number of elements for Bn, we would have that if

(`− 1)m + ` 5 n 5 `m + `

for some `, then κ(n) = 2`. So, in general we have that κ(n) 5 2b n
mc+1.

For all n = 1, let Dn be the union of all full fundamental intervals of rank
n, that are not a subset of any full fundamental interval of lower rank. From
the next lemma it follows that the full fundamental intervals generate the
Borel σ-algebra on [0, 1).

Lemma 2.5. We have

λ

( ⋃

n=1

Dn

)
=

∑

n=1

λ(Dn) = λ
(
[0, 1)

)
= 1.

Proof. Notice that all of the sets Dn are disjoint. By (12) we have for
each n = 1, that

0 5 λ

(
[0, 1) \

n⋃

i=1

Di

)
5 κ(n)

βn
,

so it is enough to prove that limn→∞
κ(n)
βn = 0. If 2 < β < 3, then since κ(n)

5 2n, we immediately have the result. For 1 < β 5 G, it follows from Remark
2.2 and Remark 2.3. Now, suppose G < β 5 2. Then by (14), we have that
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κ(n) 5 F (n + 2), where F (n + 2) is the (n + 2)-th element of the Fibonacci
sequence. For the elements of this sequence, there is a closed formula which
gives

(15) F (n) =
Gn − (1−G)n

√
5

.

So
κ(n)
βn

5 1√
5

[
G2

(
G

β

)n

− (1−G)2
(

1−G

β

)n]
.

Since G < β 5 2, also in this case limn→∞
κ(n)
βn = 0 and this proves the lemma.

¤
Remark 2.4. The fact that ∆(0) is a full fundamental interval of rank 1

allows us to construct full fundamental intervals of arbitrary small Lebesgue
measure. This, together with the previous lemma, guarantees that we can
write each subinterval of [0, 1) as a countable union of full fundamental in-
tervals. Thus, the full fundamental intervals generate the Borel σ-algebra on
[0, 1).

Notice that for the cases illustrated by Figure 1(b) and 1(c), we can de�ne
the partitions ∆(n), the sets Bn and the numbers κ(n) in a similar way. The
only di�erences are that the support of the ACIM is given by the interval
[0, u− 1) and that ∆(1) is the only full fundamental interval of rank 1. In
that sense, ∆(1) plays the role of ∆(0) above. Since in these cases we have
2 < β < 3 and since κ(n) 5 2n for all n = 1, we can prove a lemma similar
to Lemma 2.5, i.e. we can prove that the full fundamental intervals generate
the Borel σ-algebra on the support of the ACIM.

3. A natural extension of T

For the version of the natural extension, we will de�ne a space R, using
the element of Bn. For n = 1, de�ne the collections

Rn =
{

Tn∆(b0 . . . bn−1)×
[
0,

1
βn

)
: ∆(b0 . . . bn−1) ∈ Bn

}
.

So to each element of Bn, there corresponds an element of Rn and thus the
number of elements in Rn is given by κ(n). We enumerate the elements of
Rn and write Rn = {R(n,i) : 1 5 i 5 κ(n)}. Thus, for each ∆(b0 . . . bn−1)
∈ Bn there exists a unique 1 5 i 5 κ(n) such that Tn∆(b0 . . . bn−1)× [0, 1

βn )
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= R(n,i). Let R0 = [0, 1)× [0, 1) and let R be the disjoint union of all these
sets, i.e.

R = R0 × {0} × {0} ∪
∞⋃

n=1

κ(n)⋃

i=1

R(n,i) × {n} × {i}.

The σ-algebra R on R is the disjoint union of the Borel σ-algebras on all
the rectangles R(n,i) and R0. Let λR be the measure on R, given by the
two dimensional Lebesgue measure on each of these rectangles. De�ne the
probability measure ν on R by setting ν(E) = 1

λR(R)λR(E) for all E ∈ R.
The next lemma says that this measure is well de�ned and �nite.

Lemma 3.1. λR(R) < ∞.
Proof. Set κ(0) = 1. Then,

λR(R) 5
∞∑

n=0

κ(n)
βn

.

Using the same arguments as in the proof of Lemma 2.5, we can show that
the sum on the right hand side converges for all 1 < β < 3. ¤

The transformation T : R → R is de�ned piecewise on each rectangle. If
(x, y) ∈ R0, then

T (x, y, 0, 0) =





(
Tx,

y

β
, 0, 0

)
, if x ∈ ∆(0),

(
Tx,

y

β
, 1, 1

)
, if x ∈ ∆(1),

(
Tx,

y

β
, 1, 2

)
, if x ∈ ∆(u).

For each n = 1, 1 5 i 5 κ(n), if

R(n,i) = Tn∆(b0 . . . bn−1)×
[
0,

1
βn

)
,

then T maps this rectangle to the rectangles corresponding to the fundamen-
tal intervals contained in ∆(b0 . . . bn−1) in the following way. If ∆(b0 . . . bn−10)
is full and (x, y) ∈ R(n,i) with x ∈ ∆(0), then

T (x, y, n, i) =
(

Tx,
b0

β
+

b1

β2
+ · · ·+ bn−1

βn
+

y

β
, 0, 0

)
.
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If ∆(b0 . . . bn−1bn) ∈ Bn+1 and j is the index of the corresponding set in Rn+1,
then for (x, y) ∈ R(n,i) with x ∈ ∆(bn), we set

T (x, y, n, i) =
(

Tx,
y

β
, n + 1, j

)
.

In Fig. 2 we show the di�erent situations in case

Tn∆(b0 . . . bn−1) =
[
0, T k(β − u)

)

for some k < n. If Tn∆(b0 . . . bn−1) =
[
0, T k(u− 1)

)
for some k < n, the

pictures look exactly the same with T k(u− 1) in place of T k(β − u).

Fig. 2 : The arrows indicate the action of T in case
Tn∆(b0 . . . bn−1) =

[
0, T k(β − u)

)
, for some k < n

If a rectangle R(n,i) corresponds to a fundamental interval ∆(b0 . . . bn−1)
such that ∆(b0 . . . bn−10) is non-full, then this is the only fundamental in-
terval contained in ∆(b0 . . . bn−1). T then maps the rectangle R(n,i) bijec-
tively to the rectangle R(n+1,j), corresponding to ∆(b0 . . . bn−10). Otherwise,
∆(b0 . . . bn−10) is a full fundamental interval contained in ∆(b0 . . . bn−1) and
the rectangle R(n,i) is partly mapped surjectively onto some rectangle R(n+1,j)

and partly into R0. From Lemma 2.5 it now follows that T is bijective.
Let π : R → [0, 1) be the projection onto the �rst coordinate. De�ne

the measure µ on ([0, 1),B(
[0, 1)

)
) by pulling back the measure ν, i.e.
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for all measurable sets E ∈ B(
[0, 1)

)
, let µ(E) = ν(π−1E). In order to

show that (R,R, ν, T ) is a version of the natural extension of the system
([0, 1),B(

[0, 1)
)
, µ, T) with π as the factor map, we will prove all of the fol-

lowing:
(i) π is a surjective, measurable and measure preserving map from R to

[0, 1).
(ii) For all x ∈ R, we have (T ◦ π)(x) = (π ◦ T )(x).
(iii) T : R → R is an invertible transformation.
(iv) R =

∨∞
n=0 T nπ−1(B

(
[0, 1)

)
), where

∨∞
n=0 T nπ−1(B

(
[0, 1)

)
) is the

smallest σ-algebra containing the σ-algebras T nπ−1(B
(
[0, 1)

)
) for all n = 1.

It is clear that π is surjective and measurable and that T ◦ π = π ◦ T .
Since T expands by a factor β in the �rst coordinate and contracts by a factor
β in the second coordinate, it is also clear that T is invariant with respect to
the measure ν. Then µ = ν ◦ π−1 de�nes a T -invariant probability measure
on ([0, 1),B(

[0, 1)
)
), that is equivalent to the Lebesgue measure on [0, 1) and

π is a measure preserving map. This shows (i) and (ii). The invertibility of T
follows from Remark 2.4, so that leaves only (iv). To prove (iv) we will have
a look at the structure of the fundamental intervals and we will introduce
some more notation.

Let ∆(b0 . . . bn−1) be a fundamental interval. We can divide the block of
digits b0 . . . bn−1 into M subblocks, C1, . . . , CM , for some M = 1, where each
subblock Ci, 1 5 i 5 M − 1, corresponds to a full fundamental interval. The
last subblock, CM , corresponds to a full fundamental interval exactly when
∆(b0 . . . bn−1) is full. We can make this precise, using the notion of return
times to R0. For points (x, y) ∈ R0 de�ne the �rst return time to R0 by

r1(x, y) = inf
{

n = 1 : T n(x, y, 0, 0) ∈ R0 × {0} × {0}
}

and for k = 1, let the k-th return time to R0 be given recursively by

rk(x, y) = inf
{

n > rk−1(x, y) : T n(x, y, 0, 0) ∈ R0 × {0} × {0}
}

.

By the Poincaré Recurrence Theorem, we have rk(x, y) < ∞ for almost all
(x, y) ∈ R0. Notice that this notion of return time depends only on x, i.e.
for all y, y′ ∈ R0 and all k = 1, rk(x, y) = rk(x, y′). So we can write rk(x)
instead of rk(x, y). If ∆(b0 . . . bn−1) ∈ ∆(n), then for all m 5 n, T m maps the
whole rectangle ∆(b0 . . . bn−1)× [0, 1) j R0 to the same rectangle in R. So
up to a certain ` 5 n, the i-th return time to R0 is equal for all elements in
∆(b0 . . . bn−1). Now suppose that ∆(b0 . . . bn−1) ∈ ∆(n) is a full fundamental
interval, then there is an M = 1 and there are numbers ri, 1 5 i 5 M such
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that ri = ri(x) for all x ∈ ∆(b0 . . . bn−1) and rM = n. Put r0 = 0. We can
also obtain the numbers ri inductively as follows. Let

r1 = inf
{

j > 0 : T j+1∆(b0 . . . bj) = [0, 1)
}

and if r1, . . . , rk−1 are already known, let

rk = inf
{

j > rk−1 : T j+1∆(brk−1
. . . bj) = [0, 1)

}
.

Take for 1 5 i 5 M ,

(16) Ci = bri−1 . . . bri−1.

Let |Ci| denote the number of digits of the block Ci. The blocks have the
following properties:
(p1) For 1 5 i 5 M , |Ci| = ri − ri−1.
(p2) If bri = 0, then ri+1 = ri + 1. This means that if a subblock begins

with the digit 0, then 0 is the only digit in this subblock. So, Ci+1 consists
just of the digit 0.
(p3) For all i ∈ {1, . . . ,M}, ∆(Ci) is a full fundamental interval of rank |Ci|.
The next lemma is the last step in proving that (R,R, ν,T ) is the natural

extension of the space ([0, 1),B(
[0, 1)

)
, µ, T).

Lemma 3.2. Let (R,R, ν,T ) and ([0, 1),B(
[0, 1)

)
, µ, T) be the dynamical

systems de�ned above. Then

R =
∞∨

n=0

T n(π−1(B
(
[0, 1)

)
)).

Proof. It is clear that
∞∨

n=0

T n(π−1(B
(
[0, 1)

)
)) j R.

By Lemma 2.5 we know that the direct products of the full fundamental
intervals contained in the rectangle R0 generate the Borel σ-algebra on this
rectangle. The same holds for all the rectangles R(n,i). First, let

∆(d0 . . . dp−1)×∆(e0 . . . eq−1)

be a generating rectangle in R0, where ∆(d0 . . . dp−1) and ∆(e0 . . . eq−1) are
full fundamental intervals. For the set ∆(e0 . . . eq−1) construct the subblocks
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C1, . . . , CM as in (16). By property (p3) and Lemma 2.1, ∆(CMCM−1 . . .
C1d0 . . . dp−1) is a full fundamental interval of rank p + q. Then

π−1
(
∆(CMCM−1 . . . C1d0 . . . dp−1)

) ∩ (
R0 × {0} × {0}

)

= ∆(CMCM−1 . . . C1d0 . . . dp−1)× [0, 1)× {0} × {0}.

Since ∆(e0 . . . eq−1) is a full fundamental interval, it can be proven by induc-
tion that for all i ∈ {1, . . . , q− 1}, T i∆(e0 . . . eq−1) = ∆(ei . . . eq−1). This, to-
gether with the de�nitions of the blocks Ci and the transformation T leads to

T q
(
π−1(CMCM−1 . . . C1d0 . . . dp−1)

) ∩ (
R0 × {0} × {0}

)

= ∆(d0 . . . dp−1)×∆(C1C2 . . . CM )× {0} × {0}.

So

∆(d0 . . . dp−1)×∆(e0 . . . eq−1)× {0} × {0} j
∞∨

n=0

T nπ−1(B
(
[0, 1)

)
).

Now, for n = 1 and i ∈ {
1, 2, . . . , κ(n)

}
, let R(n,i) be a rectangle in Rn and

suppose that it corresponds to the fundamental interval ∆(b0 . . . bn−1) ∈ Bn.
Hence,

R(n,i) = Tn∆(b0 . . . bn−1)×
[
0,

1
βn

)
× {n} × {i}.

Let ∆(d0 . . . dp−1)×∆(e0 . . . eq−1)× {n} × {i} be a generating rectangle for
the Borel σ-algebra on the rectangle R(n,i). So ∆(d0 . . . dp−1) and ∆(e0 . . .

eq−1) are again full fundamental intervals. Notice that

∆(e0 . . . eq−1) j ∆(0 . . . 0︸ ︷︷ ︸
n times

),

which means that q = n. Also, for all i ∈ {0, . . . , n− 1}, ei = 0 and thus
ri+1 = i + 1. So, if we divide e0 . . . eq−1 into subblocks Ci as before, we get
that C1 = C2 = · · · = Cn = 0, that M = n and that |Cn+1|+ · · ·+ |CM | =
q − n. Consider the set

C = ∆(CMCM−1 . . . Cn+1b0 . . . bn−1d0 . . . dp−1).

We will show the following.
Claim: The set C is a fundamental interval of rank p + q and T qC =

∆(d0 . . . dp−1).
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First notice that

C = ∆(CMCM−1 . . . Cn+1) ∩ Tn−q∆(b0 . . . bn−1) ∩ T−q∆(d0 . . . dp−1).

So obviously,

T qC j T q∆(CMCM−1 . . . Cn+1) ∩ Tn∆(b0 . . . bn−1) ∩∆(d0 . . . dp−1).

By Lemma 2.1, ∆(CMCM−1 . . . Cn+1) is a full fundamental interval of rank
q − n, so T q∆(CMCM−1 . . . Cn+1) = [0, 1). Now, by the de�nition of R(n,i)

we have that

(17) ∆(d0 . . . dp−1) j Tn∆(b0 . . . bn−1),

and thus T qC j ∆(d0 . . . dp−1).
For the other inclusion, let z ∈ ∆(d0 . . . dp−1). By (17), there is an element

y in ∆(b0 . . . bn−1), such that Tny = z. And since T q−n∆(CMCM−1 . . . Cn+1)
= [0, 1), there is an x ∈ ∆(CMCM−1 . . . Cn+1) with T q−nx = y, so T qx = z.
This means that

z ∈ T q∆(CMCM−1 . . . Cn+1) ∩ Tn∆(b0 . . . bn−1) ∩∆(d0 . . . dp−1).

So T qC = ∆(d0 . . . dp−1) and this proves the claim.
Consider the set D = π−1(C) ∩ (

R0 × {0} × {0}
)
. Then as before, we

have

T q−nD = ∆(b0 . . . bn−1d0 . . . dp−1)×∆(Cn+1Cn+2 . . . CM )× {0} × {0}.
And after n more steps,

T qD = ∆(d0 . . . dp−1)×∆(00 . . . 0︸ ︷︷ ︸
n times

Cn+1 . . . CM )× {n} × {i}

= ∆(d0 . . . dp−1)×∆(e0 . . . eq−1)× {n} × {i}.
So,

∆(d0 . . . dp−1)×∆(e0 . . . eq−1)× {n} × {i} ∈
∞∨

n=0

T nπ−1(B
(
[0, 1)

)
)

and thus we see that

R =
∞∨

n=0

T nπ−1(B
(
[0, 1)

)
). ¤

This gives the following theorem.
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Theorem 3.1. The dynamical system (R,R, ν, T ) is a version of the
natural extension of the dynamical system ([0, 1),B(

[0, 1)
)
, µ, T). Here, the

measure µ, given by µ(E) = ν
(
π−1(E)

)
for all measurable sets E, is the

ACIM of T and the density of µ is equal to the density from equation (10).
Proof. The fact that (R,R, ν,T ) is a version of the natural extension of

the system ([0, 1),B(
[0, 1)

)
, µ, T) follows from Remark 2.4, the properties of

the map π and Lemma 3.2. Now for each measurable set E ∈ B(
[0, 1)

)
, we

have

µ(E) = ν
(
π−1(E)

)

=
1

λR(R)

[
λ(E) +

∞∑

n=1

∑

∆(b0...bn−1)∈Bn

1
βn

λ
(
E ∩ Tn∆(b0 . . . bn−1)

)]

=
1

λR(R)

∫

E

[
1 +

∞∑

n=1

∑

∆(b0...bn−1)∈Bn

1
βn

1T n∆(b0...bn−1)

]
dλ.

Here Tn∆(b0 . . . bn−1) has the form
[
0, T i(u− 1)

)
or

[
0, T i(β − u)

)

for some 0 5 i < n. So, the density of the measure µ equals the density from
equation (10). ¤

Remark 3.1. (i) The above de�nitions of the space R and the transfor-
mation T can be adapted quite easily for the cases illustrated by Figure 1(b)
and 1(c). We let ∆(1) take the role of ∆(0) and consider the orbits of the
points 1 and β(u− 1)−u. In general, the sets Bn will contain more elements,
but since 2 < β < 3, it is immediate that λR(R) < ∞. This shows that we
can construct a version of the natural extension of T , also for these two cases.

(ii) Let R′
0 be the set obtained from R0 by removing the set of measure

zero of elements which do not return to R0, i.e. we remove those (x, y) for
which r1(x, y) = ∞. Let W : R′

0 → R′
0 be the transformation induced by T ,

i.e. for all (x, y) ∈ R′
0, let

W(x, y) = T r1(x,y)(x, y, 0, 0).

Then the dynamical system (R′
0,B(R′

0), λ× λ,W), where B(R′
0) is the Borel

σ-algebra on R′
0, is isomorphic to the natural extension of a GLS-transfor-

mation as de�ned in [4]. This implies that the system
(
R′

0,B(R′
0), λ× λ,W)

is Bernoulli.
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Using this invariant measure, we will show that T is an exact transfor-
mation. Since the full fundamental intervals generate the Borel σ-algebra on
the support of the ACIM, by a result of Rohlin [15], it is enough to show
that there exists a universal constant γ > 0, such that for any full fundamen-
tal interval ∆(b0 . . . bn−1) and any measurable subset E j ∆(b0 . . . bn−1), we
have

µ(TnE) 5 γ · µ(E)
µ
(
∆(b0 . . . bn−1)

) .

To this end, de�ne two constants, c1, c2 > 0, by

c1 =
1

λR(R)
and c2 = 1 +

∞∑

n=1

∑

∆(b0...bn−1)∈Bn

1
βn

.

Then for all measurable sets E, we have

c1λ(E) 5 µ(E) 5 c1c2λ(E).

Now, let ∆(b0 . . . bn−1) be a full fundamental interval of rank n. Then by (8),

λ
(
∆(b0 . . . bn−1)

)
=

1
βn

.

Let E j ∆(b0 . . . bn−1) be a measurable set. Then

λ(TnE) = βnλ(E) =
1

λ
(
∆(b0 . . . bn−1)

) λ(E).

Now,

µ(TnE) 5 c1c2λ(TnE) = c1c2
λ(E)

λ
(
∆(b0 . . . bn−1)

)

5 c1c2
µ(E)c1c2

c1µ
(
∆(b0 . . . bn−1)

) = c1c
2
2

µ(E)
µ
(
∆(b0 . . . bn−1)

) .

If we take γ = c1c
2
2, then γ > 0 and

µ(TnE) 5 γ · µ(E)
µ
(
∆(b0 . . . bn−1)

) .

Thus, T is exact and hence mixing of all orders. Furthermore, the natural
extension T is a K-automorphism. By a result of Rychlik [16], it follows
immediately that T is weakly Bernoulli.
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4. A speci�c example

In this section we will consider one speci�c example of a β-transformation
with three digits. Let G be the golden mean as before and take
β = G. Consider the allowable digit set A = {0, 1, 4

3}. The partition ∆ =

{∆(0),∆(1),∆(4
3)} is given by

∆(0) =
[
0,

1
β

)
, ∆(1) =

[
1
β

,
4
3β

)
, ∆

(
4
3

)
=

[
4
3β

, 1
)

and the transformation is then Tx = βx− j, if x ∈ ∆(j).
The points x = 1

3 and x = β − 4
3 are of special interest and their orbits

under T are as follows:

1
3
, T

1
3

=
β

3
, T 2 1

3
=

β2

3
, T 3 1

3
=

1
3β3

,

T 4 1
3

=
1

3β2
, T 5 1

3
=

1
3β

, T 6 1
3

=
1
3
,

β − 4
3
, T

(
β − 4

3

)
= 1− β

3
, T 2

(
β − 4

3

)
=

2
3
β − 1

3
, T 3

(
β − 4

3

)
=

1
3β

.

Fig. 3 : The orbits of 1
3 and β − 4

3 under the greedy β-transformation with
β = 1+

√
5

2 and A =
{

0, 1, 4
3

}
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Thus their greedy β-expansions are given by

1
3

=
∞∑

n=1

d
(1)
n

βn
=β

(
00

4
3
00

)ω

, β − 4
3

=
∞∑

n=1

d
(2)
n

βn
=β 001

(
0000

4
3

)ω

.

Notice that β− 4
3 would be the image of 1 under T , if T were not restricted to

the half open interval [0, 1). Fig. 3 shows the orbits of both points under T .
For each non-full fundamental interval, ∆(b0 . . . bn−1), the set Tn∆(b0 . . .

bn−1) is one of the following:
[
0, β − 4

3

)
,

[
0, 1− β

3

)
,

[
0,

2
3
β − 1

3

)
,

[
0,

1
3

)
,

[
0,

β

3

)
,

[
0,

β2

3

)
,

[
0,

1
3β3

)
,

[
0,

1
3β2

)
,

[
0,

1
β

)
.

This means that we could give all the elements of Rn explicitly. We will not
do this, since Fig. 4 speaks for itself. The space R contains all the rectangles
shown in the �gure.

Fig. 4 : The space R consists of all these rectangles. The arrows indicate where the
rectangles are mapped under T
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To determine the invariant measure of T , we need to project the Lebesgue
measure on the rectangles of R onto the �rst coordinate. Therefore, we need
to add up the heights of all the rectangles which have the same interval in
the �rst coordinate. To do this, we only need to determine the total height
of the rectangles of the form [0, 1

3)× [0, 1
βn ), since the total height of all

the other rectangles in R can be deduced from this. These heights can be
found by using the Fibonacci numbers F (n), as de�ned before. Then κ(1) =
2 and observe that for n = 2, κ(n) = F(bn−1

3 c+ 2) + F(bn−2
3 c+ 1). For

n = 3k + 1, k = 0, the number of rectangles in R of the form [0, 1
3)× [0, 1

βn )
is equal to F (k + 1) and for n = 3k + 2, k = 1, this number is equal to F (k).
Formula (15) gives that the total height of all these rectangle is equal to

∞∑

k=0

F (k + 1)
β3k+1

+
∞∑

k=1

F (k)
β3k+2

=
1
β

[
1 +

∞∑

k=1

βF (k + 1) + F (k)
β3k+1

]

=
1
β

[
1 +

1√
5

(
β

∞∑

k=1

1
β2k

+
1
β

∞∑

k=1

1
β2k

)]

=
1
β

[
1 +

1√
5

((
β +

1
β

) (
β2

β2 − 1
− 1

))]
=

1
β

[
1 +

1√
5
(3− β)

]
=

1
3
.

The total height of the rectangles of the form [0, β
3 )× [0, 1

βn ) is now equal
to 1

β , that of the rectangles of the form [0, β2

3 )× [0, 1
βn ) is 1

β2 , etc. The total
height of the rectangles [0, 1

3β)× [0, 1
βn ) is given by 1

β4 + 1
β5 = 1

β3 . Then the
density function of the invariant probability measure of T , h : [0, 1) → [0, 1),
equivalent to the Lebesgue measure on [0, 1), is given by

h(x) =
3

58− 31β

[
1
β

1[0,β− 4
3 )(x) +

1
β2

1[0,1−β
3 )(x) +

1
β3

1[0, 2
3
β− 1

3 )(x)

+ 1[0, 1
3 )(x) +

1
β

1[0, β
3 )(x) +

1
β2

1[0, β2

3 )(x) +
1
β3

1[0, 1
3β3 )(x)

+
1
β4

1[0, 1
3β2 )(x) +

1
β3

1[0, 1
3β )(x) + 1[0,1)(x)

]
.
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